616 research outputs found

    Quantum Counterfactuals and Locality

    Full text link
    Stapp's counterfactual argument for quantum nonlocality based upon a Hardy entangled state is shown to be flawed. While he has correctly analyzed a particular framework using the method of consistent histories, there are alternative frameworks which do not support his argument. The framework dependence of quantum counterfactual arguments, with analogs in classical counterfactuals, vitiates the claim that nonlocal (superluminal) influences exist in the quantum world. Instead it shows that counterfactual arguments are of limited use for analyzing these questions.Comment: 8 pages, 1 PSTricks figur

    The Nature and Location of Quantum Information

    Get PDF
    Quantum information is defined by applying the concepts of ordinary (Shannon) information theory to a quantum sample space consisting of a single framework or consistent family. A classical analogy for a spin-half particle and other arguments show that the infinite amount of information needed to specify a precise vector in its Hilbert space is not a measure of the information carried by a quantum entity with a dd-dimensional Hilbert space; the latter is, instead, bounded by log d bits (1 bit per qubit). The two bits of information transmitted in dense coding are located not in one but in the correlation between two qubits, consistent with this bound. A quantum channel can be thought of as a "structure" or collection of frameworks, and the physical location of the information in the individual frameworks can be used to identify the location of the channel. Analysis of a quantum circuit used as a model of teleportation shows that the location of the channel depends upon which structure is employed; for ordinary teleportation it is not (contrary to Deutsch and Hayden) present in the two bits resulting from the Bell-basis measurement, but in correlations of these with a distant qubit. In neither teleportation nor dense coding does information travel backwards in time, nor is it transmitted by nonlocal (superluminal) influences. It is (tentatively) proposed that all aspects of quantum information can in principle be understood in terms of the (basically classical) behavior of information in a particular framework, along with the framework dependence of this information.Comment: Latex 29 pages, uses PSTricks for figure

    A Generalized Circle Theorem on Zeros of Partition Function at Asymmetric First Order Transitions

    Full text link
    We present a generalized circle theorem which includes the Lee-Yang theorem for symmetric transitions as a special case. It is found that zeros of the partition function can be written in terms of discontinuities in the derivatives of the free energy. For asymmetric transitions, the locus of the zeros is tangent to the unit circle at the positive real axis in the thermodynamic limit. For finite-size systems, they lie off the unit circle if the partition functions of the two phases are added up with unequal prefactors. This conclusion is substantiated by explicit calculation of zeros of the partition function for the Blume-Capel model near and at the triple line at low temperatures.Comment: 10 pages, RevTeX. To be published in PRL. 3 Figures will be sent upon reques

    Decoherence of Histories and Hydrodynamic Equations for a Linear Oscillator Chain

    Full text link
    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse-grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally-induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities.Comment: 37 pages, RevTe

    Uniformly accelerating black holes in a de Sitter universe

    Get PDF
    A class of exact solutions of Einstein's equations is analysed which describes uniformly accelerating charged black holes in an asymptotically de Sitter universe. This is a generalisation of the C-metric which includes a cosmological constant. The physical interpretation of the solutions is facilitated by the introduction of a new coordinate system for de Sitter space which is adapted to accelerating observers in this background. The solutions considered reduce to this form of the de Sitter metric when the mass and charge of the black holes vanish.Comment: 6 pages REVTeX, 3 figures, to appear in Phys. Rev. D. Figure 2 correcte

    Quantum Locality

    Full text link
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections elsewhere. To appear in Foundations of Physic

    The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice Z^3

    Full text link
    We consider an Euclidean supersymmetric field theory in Z3Z^3 given by a supersymmetric Φ4\Phi^4 perturbation of an underlying massless Gaussian measure on scalar bosonic and Grassmann fields with covariance the Green's function of a (stable) L\'evy random walk in Z3Z^3. The Green's function depends on the L\'evy-Khintchine parameter α=3+ϵ2\alpha={3+\epsilon\over 2} with 0<α<20<\alpha<2. For α=32\alpha ={3\over 2} the Φ4\Phi^{4} interaction is marginal. We prove for α32=ϵ2>0\alpha-{3\over 2}={\epsilon\over 2}>0 sufficiently small and initial parameters held in an appropriate domain the existence of a global renormalization group trajectory uniformly bounded on all renormalization group scales and therefore on lattices which become arbitrarily fine. At the same time we establish the existence of the critical (stable) manifold. The interactions are uniformly bounded away from zero on all scales and therefore we are constructing a non-Gaussian supersymmetric field theory on all scales. The interest of this theory comes from the easily established fact that the Green's function of a (weakly) self-avoiding L\'evy walk in Z3Z^3 is a second moment (two point correlation function) of the supersymmetric measure governing this model. The control of the renormalization group trajectory is a preparation for the study of the asymptotics of this Green's function. The rigorous control of the critical renormalization group trajectory is a preparation for the study of the critical exponents of the (weakly) self-avoiding L\'evy walk in Z3Z^3.Comment: 82 pages, Tex with macros supplied. Revision includes 1. redefinition of norms involving fermions to ensure uniqueness. 2. change in the definition of lattice blocks and lattice polymer activities. 3. Some proofs have been reworked. 4. New lemmas 5.4A, 5.14A, and new Theorem 6.6. 5.Typos corrected.This is the version to appear in Journal of Statistical Physic

    Renormalization group maps for Ising models in lattice gas variables

    Full text link
    Real space renormalization group maps, e.g., the majority rule transformation, map Ising type models to Ising type models on a coarser lattice. We show that each coefficient of the renormalized Hamiltonian in the lattice gas variables depends on only a finite number of values of the renormalized Hamiltonian. We introduce a method which computes the values of the renormalized Hamiltonian with high accuracy and so computes the coefficients in the lattice gas variables with high accuracy. For the critical nearest neighbor Ising model on the square lattice with the majority rule transformation, we compute over 1,000 different coefficients in the lattice gas variable representation of the renormalized Hamiltonian and study the decay of these coefficients. We find that they decay exponentially in some sense but with a slow decay rate. We also show that the coefficients in the spin variables are sensitive to the truncation method used to compute them.Comment: 22 pages, 9 color postscript figures; minor revisions in version

    The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer

    Get PDF
    A quantum computer can efficiently find the order of an element in a group, factors of composite integers, discrete logarithms, stabilisers in Abelian groups, and `hidden' or `unknown' subgroups of Abelian groups. It is already known how to phrase the first four problems as the estimation of eigenvalues of certain unitary operators. Here we show how the solution to the more general Abelian `hidden subgroup problem' can also be described and analysed as such. We then point out how certain instances of these problems can be solved with only one control qubit, or `flying qubits', instead of entire registers of control qubits.Comment: 16 pages, 3 figures, LaTeX2e, to appear in Proceedings of the 1st NASA International Conference on Quantum Computing and Quantum Communication (Springer-Verlag
    corecore